
Single Node Optimization on
Hopper

Michael Stewart, NERSC

Introduction

● Why are there so many compilers available on

Hopper?
● Strengths and weaknesses of each compiler.
● Advice on choosing the most appropriate compiler for

your work.
● Comparative benchmark results.
● How to compile and run with OpenMP for each

compiler.
● Recommendations for running hybrid MPI/OpenMP

codes on a node.

Why So Many Compilers on Hopper?

● Franklin was delivered with the only commercially

available compiler for Cray Opteron systems, PGI.
● GNU compilers were on Franklin, but at that time

GNU Fortran optimization was poor.
● Next came Pathscale because of superior

optimization.
● Cray was finally legally allowed to port their compiler

to the Opteron so it was added next.
● Intel was popular on Carver, and it produced highly

optimized codes on Hopper.
● PGI is still the default, but this is not a NERSC

recommendation. Cray's current default is the Cray
compiler, but we kept PGI to avoid disruption.

PGI

● Strengths
○ Available on a wide variety of platforms making

codes very portable.
○ Because of its wide usage, it is likely to compile

almost any valid code cleanly.
● Weaknesses

○ Does not optimize as well as compilers more
narrowly targeted to AMD architectures.

● Optimization recommendation:
○ -fast

Cray

● Strengths
○ Fortran is well optimized for the Hopper

architecture.
○ Uses Cray math libraries for optimization.
○ Well supported.

● Weaknesses
○ Compilations can take much longer than with other

compilers.
○ Not very good optimization of C++ codes.

● Optimization recommendations:
○ Compile with no explicit optimization

arguments. The default level of optimization is
very high.

Intel

● Strengths
○ Optimizes C++ and Fortran codes very well.
○ Supports C++ very well.

● Weaknesses
○ Occasional problems in porting codes to this

compiler.
● Optimization recommendations:

○ Compile with no explicit optimization
arguments. The default level of optimization is
very high.

GNU/GCC

● Strengths
○ Available on a wide variety of platforms for free.
○ Exposure to a wide variety of codes, so any given

code is likely to compile cleanly.
○ Very good at C++ optimization.
○ Optimizes Fortran codes as well as PGI on the

average.
● Weaknesses

○ Not a commercial product, so no guarantee of bug
fixes.

● Optimization recommendation:
○ -O3 -ffast-math

Pathscale

● Strengths
○ Good optimization.

● Weaknesses
○ Support level and future of the product are

questionable.
○ Cray is withdrawing library support for this

compiler.
● Optimization recommendation:

○ -O3

Which Compiler to Use?

● Porting a code to Hopper.
○ Use the existing compiler if it is on Hopper, since

relatively minor changes should be necessary to
the Makefile or configure script.

● Developing a code on Hopper.
○ For C++ use Intel or GNU.
○ Will it only run on Hopper? The Cray Fortran and

Intel compilers are likely to produce the fastest
code.

○ Will it be ported to other systems? GNU and PGI
will produce relatively fast code and can be ported
more easily to other architectures.

Hopper Benchmark Performance

Compiling for OpenMP on Hopper

● Cray compiler: -Oomp (on by default)
● PGI: -mp=nonuma
● Intel: -openmp
● GNU: -fopenmp
● Pathscale: -mp

Running with OpenMP on Hopper

● Run time all compilers:
○ - set OMP_NUM_THREADS to number of threads
○ aprun -d numthreads ...

● Pathscale run time - set PSC_OMP_AFFINITY to
FALSE.

● Intel run time - use "-cc none" or "-cc numa_node"
arguments to aprun.

OpenMP/Hybrid Run Time Optimization

● Each 24 core Hopper compute node consists of 4 6
core "numa nodes"

● Best hybrid code performance when you allocate 1
MPI process with 6 threads to each of these nodes
and use their local memory

● Single node parameters:
○ export OMP_NUM_THREADS=6
○ aprun -d 6 -N 4 -S 1 -ss

Questions?

